18AE/AS35

Third Semester B.E. Degree Examination, Feb./Mar. 2022 Mechanics of Fluids

Time: 3 hrs.

USN

1

2

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. State Newton's law of viscosity and explain about types of fluids with Rheological diagram. (08 Marks)

- b. Draw neat sketch and explain about surface Tension and capillarity. Also obtain expression for capillary rise. (06 Marks)
- c. An oil of viscosity 5 poise is used for lubrication between a shaft and sleeve. The diameter of shaft is 0.5m at rotates at 200rpm. Thickness of oil film is 1mm. Calculate the power lost in oil for a sleeve length of 100mm. (06 Marks)

OR

- a. Define Pascal's law and prove the Pascal's law by relation. (06 Marks)
 b. Explain about pressure measurement devices used in fluid mechanics and aerospace
- applications. (06 Marks)
- c. Obtain the relation for Hydrostatic forces for a curved surface submerged in liquid.

(08 Marks)

(06 Marks)

Module-2

- 3 a. Briefly explain about types of fluid flow.
 - b. Define velocity potential and stream function. Prove that the product of equipotential line and line of constant stream function is (-1). (06 Marks)
 - c. A pipe of 450mm diameter branches into two pipes of diameters 300mm and 200mm. The average velocity in 450mm pipe is 3m/s. Find
 - i) Discharge in a 450mm diameter pipe
 - ii) Velocity in 200mm diameter pipe if average velocity in 300mm pipe is 2.5m/s.

(08 Marks)

OR

4 a. Derive Energy equation in differential form by explaining the basic principles. (10 Marks)
b. Derive Navier-Stokes equation and write the assumptions made for Navier-Stokes equation.

(10 Marks)

Module-3

5 a. Derive Euler's equation of motion and write the Bernoulli's equation. (10 Marks) b. A horizontal venturimeter with inlet diameter 20cm and throat diameter 10cm is used to measure the flow of water. The pressure at the inlet is 17.658 M/cm² and the vacuum pressure at the throat is 30cm of mercury. Find the discharge through venturimeter if C_d = 0.98. (10 Marks)

- The pressure difference ΔP in a pipe of diameter 'D' and length ' ℓ ' due to turbulent flow 6 a. depends on velocity V, viscosity µ, density ρ and roughness K. Solve using Buckingham's π -theorem and obtain expression for ΔP , Use (D, V, ρ) as repeating variable. (10 Marks) (06 Marks)
 - b. Derive expression for Reynolds's number and Mach number.
 - A ship model of scale 1:50 is towed through a sea water at a speed of 1m/s. Force required C. to tow the model is 2N. If the prototype is subjected to wave resistance only determine the (04 Marks) speed and propulsive force of the ship.

Module-4

- Derive the expression for Lift and Drag. 7 a.
 - A kite weighing 3.924N with area 0.8m × 0.8m makes an angle 12° to the horizontal. String b. attached to the kite makes an angle 45° to the horizontal. The pull on the string is 24.525N when the wind is flowing at a speed of 30km/hour. Find the co-efficient of lift and drag. (08 Marks) Take density of air as 1.25 kg/m^3 . (06 Marks)
 - Define : i) Boundary layer thickness ii) Displacement thickness. C.

OR

(10 Marks) Derive Von-Karman momentum Integral equation and write its application. 8 a. Find the displacement thickness and momentum thickness for the velocity distribution in the b. boundary layer given by

 $\frac{u}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$

(10 Marks)

(06 Marks)

Module-5

- ii) Adiabatic process. (04 Marks) Explain about i) Isothermal process 9 a. Write the Bernoulli's equation for Incompressible flow and obtain the expression for
 - (08 Marks) Adiabatic process Bernoulli's equation. Draw neatly and explain about propagation of pressure waves in a compressible fluid. Also C. (08 Marks) explain about Mach cone and Mach angle.

OR

Derive the expression for stagnation pressure, stagnation temperature and stagnation density. 10 a. (10 Marks) An aircraft is flying at 1100km/hour through the stagnant air having pressure of 7N/cm² and b.

temperature -5°C. Find the Mach number of an aircraft. Also calculate the pressure temperature and density of air at stagnation point on the nose of aircraft. Take R = 287.14 J/Kg K, K = 1.4(10 Marks)